www.mymathscloud.com © MyMathsCloud

How To Complete The Square 6

Method 1:	Example with a 1 in front of x^2 $x^2 - 8x - 1$	Example WITHOUT a 1 in front of x^2		
Follow A Technique	Step 1: Halve the number in front of x and put it in squared bracket that look likes $(x+?)^2$ or $(x-?)^2$. $\frac{-8}{2} = -4$	We need to do an extra step first which is to FACTOF complete the square after. There are 2 ways to factor Way 1: Factorise the 2 out of the first 2 terms	t OUT whatever number is in front of x^2 and then we or out the number first of all. We can either Way 2: Factorise the 2 out of ALL 3 terms	
	$(x-4)^2$	Step 1: We need to factorise out the 2 first,	Step 1: We need to factorise out the 2 first from	
	$(x-4)^2 - 1$	from the first 2 terms only. This just divides all terms by 2 $2\left(r^2 - \frac{5}{2}r\right) - 3$	ALL terms. This just divides the first two terms by 2	
	This means. $(x - 4)^2 - 1$ in step 2 becomes $(x - 4)^2 - 1^{-2}$	Step 2: Now complete the square on what is	$2\left(x^2-\frac{5}{2}x-\frac{3}{2}\right)$	
	Step 4: Simplify $(x - 4)^2 - 17$	inside the bracket. Some students get confused since there aren't 3 terms inside brackets like when usually completing the square. The third term that we usually is just 0 now hence nothing to were about	Step 2: Now complete the square on inside the bracket as usual. = $2\left[\left(x-\frac{5}{4}\right)^2-\frac{3}{2}-\left(\frac{5}{4}\right)^2\right]$	
	You might be wondering. Why did we do -4^2 in step 3? Or even why these steps even work? If we expand $(x - 4)^2 - 1$ in step 2 we get $x^2 - 8x + 16 - 1$ BUT, we had $x^2 - 8x - 1$ in the original question.	$= 2\left[\left(x - \frac{5}{4}\right)^2 - \left(\frac{5}{4}\right)^2\right] - 3$ $= 2\left[\left(x - \frac{5}{4}\right)^2 - \frac{25}{16}\right] - 3$	Step 3: Simplify = $2\left[\left(x - \frac{5}{4}\right)^2 - \frac{3}{2} - \frac{25}{16}\right]$	
	So the extra term appearing is $+16$ which is 4^2 . This is why we undo it/need to get rid of it hence the -4^2	Step 3: Multiply the 2 back in = $2\left(x - \frac{5}{4}\right)^2 - \frac{25}{8} - 3$	$= 2 \left[\left(x - \frac{5}{4} \right)^2 - \frac{49}{16} \right]$	
		$= 2\left(x - \frac{5}{4}\right)^2 - \frac{49}{8}$	Step 4: Multiply the 2 back in = $2\left(x - \frac{5}{4}\right)^2 - \frac{49}{8}$	
Method 2:	Form 1: Quadratics $x^2 + bx + c$ become: $\left(x + \frac{b}{2}\right)^2 + c - \left(\frac{b}{2}\right)^2$	Form 2: Quadratics $ax^2 + bx + c$	become a $\left[\left(x+\frac{b}{2a}\right)^2+\frac{c}{a}-\left(\frac{b}{2a}\right)^2\right]$	
Memorise	$x^2 - 8x - 1$	$2x^2 -$	5x - 3	
a template	Here $b = -8, c = -1$	Here $a = 2$, b	p = -5, c = -3	
	becomes $\left(x + \frac{-8}{2}\right)^2 + -1 - \left(\frac{-8}{2}\right)^2$	$2\left[\left(x+\frac{-5}{2(2)}\right)^2\right]$	omes + $\frac{-3}{2} - \left(\frac{-5}{2(2)}\right)^2$]	
	Simplify $(x-4)^2 - 1 - (-4)^2$	Sim	nplify (1) ² 3 25]	
	$(x-4)^2 - 1 - 16$	$=2\left[\left(x-\frac{1}{4}\right)\right]$	$= 2 \left[\left[\left(x - \frac{4}{4} \right) - \frac{2}{2} - \frac{1}{16} \right] \right]$	
Method 3:	$\frac{x^2 - 4x^2 - 17}{x^2 - 8x - 1}$	$\frac{1}{2x^2 - 5x - 3} = \frac{1}{2x^2 - 5x - 3}$		
Expand	We know that our answer form will look like $(x+p)^2+q$ Expanding this gives $x^2+2px+p^2+q$	Our answer form will look like $a(x+p)^2+q$ Expanding this gives $ax^2+2apx+ap^2+q$		
form and	So $x^2 - 8x - 1$ is identical to (\equiv) $x^2 + 2px + p^2 + q$	So $2x^2 - 5x - 3$ is identical to (\equiv) $ax^2 + 2apx + a$	$p^2 + q$	
compare coefficients	Let's colour code for ease of explanation: $x^2 - 8x - 1 \equiv x^2 + 2px + p^2 + q$	Let's colour code for ease of explanation: $2x^2 - 5x - 3 \equiv ax$	$x^2 + 2apx + ap^2 + q$	
	By comparing coefficients of the x^2 , x and constant terms we get $\frac{2p}{2} = -8$	By comparing coefficients of the x^2 , x and constant a	terms we get = 2	
	$p^{2} + q = -1$ Solving simultaneously via substitution gives, $p = -4, q = -17$	2ap ap^2 + Solving simultaneously via substitution gives, a = 2,	p = -5 q = -3 $p = -\frac{5}{4}, q = -\frac{49}{2}$	
	So $(x + p)^2 + q$ becomes $(x - 4)^2 - 17$	so $a(x+p)^2 + q$ becomes $2\left(x - \frac{5}{4}\right)^2 - \frac{49}{8}$	4 ⁻ 8	

Examples where you need to re-arrange first

$5 + 2x - x^2$	$1.8 + 0.4d - 0.002d^2$	
Re-write as	Re-write as	
$-x^2 + 2x + 5$	$-0.002d^2 + 0.4d + 1.8$	
We now factorise out the -1 (i.e. divide everything by 2)	We now factorise out the -0.002 (i.e. divide everything -0.002)	
$-1(x^2-2x-5)$	$-0.002(d^2 - 200d - 900)$	
Now complete the square on inside the bracket as usual	Now complete the square on inside the bracket as usual	
$-1[(x-1)^2-5-1]$	$-0.002[(d-100)^2-900-100^2)]$	
$-1[(x-1)^2-6]$	$-0.002((d-100)^2-10900)$	
Multiply the -1 back in	Multiply the -0.002 back in	
$-1(x-1)^2+6$	$-0.002(d-100)^2+21.8$	
$6 - (x - 1)^2$	$21.8 - 0.002(d - 100)^2$	