WWW.mymathscloud.com
© MyMathsCloud

## 6 How To Complete The Square

| Method 1: | Example with a 1 in front of $x^{2}$ $x^{2}-8 x-1$ | Example WITHOUT a 1 in front of $x^{2}$ $2 x^{2}-5 x-3$ |
| :---: | :---: | :---: |
| Follow A <br> Technique | Step 1: Halve the number in front of $x$ and put it in squared bracket that look likes $(x+\text { ? })^{2}$ or $(x-\text { ? })^{2}$. | We need to do an extra step first which is to FACTOR OUT whatever number is in front of $x^{2}$ and then we complete the square after. There are 2 ways to factor out the number first of all. We can either |
|  | $\begin{aligned} & \frac{-8}{2}=-4 \\ & (x-4)^{2} \end{aligned}$ | Way 1: Factorise the 2 out of the first 2 terms <br> ONLY$\quad$ Way 2: Factorise the 2 out of ALL 3 terms |
|  | Step 2: Copy the constant at the end $(x-4)^{2}-1$ | Step 1: We need to factorise out the 2 first, from the first 2 terms only. This just divides all terms by 2 <br> Step 1: We need to factorise out the 2 first from ALL terms. This just divides the first two terms by 2 |
|  | Step 3: undo (subtract) the $4^{2}$ above <br> This means. $(x-4)^{2}-1$ in step 2 becomes $(x-4)^{2}-1-4^{2}$ | $2\left(x^{2}-\frac{5}{2} x\right)-3$ $2\left(x^{2}-\frac{5}{2} x-\frac{3}{2}\right)$ |
|  | Step 4: Simplify $(x-4)^{2}-17$ | inside the bracket. Some students get confused since there aren't 3 terms inside brackets like when usually completing the square. The third term that we usually is just 0 now hence nothing to worry about. <br> Step 2: Now complete the square on inside the bracket as usual. $=2\left[\left(x-\frac{5}{4}\right)^{2}-\frac{3}{2}-\left(\frac{5}{4}\right)^{2}\right]$ |
|  | You might be wondering. Why did we do $-4^{2}$ in step 3? Or even why these steps even work? <br> If we expand $(x-4)^{2}-1$ in step 2 we get $x^{2}-8 x+16-1$ <br> BUT, we had $x^{2}-8 x-1$ in the original question. | $\begin{aligned} & =2\left[\left(x-\frac{5}{4}\right)^{2}-\left(\frac{5}{4}\right)^{2}\right]-3 \\ & =2\left[\left(x-\frac{5}{4}\right)^{2}-\frac{25}{16}\right]-3 \end{aligned}$ <br> Step 3: Simplify $=2\left[\left(x-\frac{5}{4}\right)^{2}-\frac{3}{2}-\frac{25}{16}\right]$ |
|  | So the extra term appearing is +16 which is $4^{2}$. This is why we undo it/need to get rid of it hence the $-4^{2}$ | Step 3: Multiply the 2 back in $=2\left(x-\frac{5}{4}\right)^{2}-\frac{25}{8}-3$ <br> Step 3: Simplify $=2\left[\left(x-\frac{5}{4}\right)^{2}-\frac{49}{16}\right]$ <br> Step 4: Multiply the 2 back in |
|  |  | $=2\left(x-\frac{5}{4}\right)^{2}-\frac{49}{8} \quad=2\left(x-\frac{5}{4}\right)^{2}-\frac{49}{8}$ |
| Method 2: | Form 1: Quadratics $x^{2}+b x+c$ become: $\left(x+\frac{b}{2}\right)^{2}+c-\left(\frac{b}{2}\right)^{2}$ | Form 2: Quadratics $a x^{2}+b x+c$ become a $\left[\left(x+\frac{b}{2 a}\right)^{2}+\frac{c}{a}-\left(\frac{b}{2 a}\right)^{2}\right]$ |
| Memorise a template | $x^{2}-8 x-1$ | $2 x^{2}-5 x-3$ |
|  | Here $b=-8, c=-1$ | Here $a=2, b=-5, c=-3$ |
|  | becomes | becomes |
|  | $\left(x+\frac{-8}{2}\right)^{2}+-1-\left(\frac{-8}{2}\right)^{2}$ | $2\left[\left(x+\frac{-5}{2(2)}\right)^{2}+\frac{-3}{2}-\left(\frac{-5}{2(2)}\right)^{2}\right]$ |
|  | Simplify $(x-4)^{2}-1-(-4)^{2}$ |  |
|  | $(x-4)^{2}-1-16$ | $=2\left[\left(x-\frac{5}{4}\right)^{2}-\frac{3}{2}-\frac{25}{16}\right]$ |
|  | $=(x-4)^{2}-17$ | $=2\left(x-\frac{5}{4}\right)^{2}-\frac{49}{8}$ |
| Method 3: | $x^{2}-8 x-1$ | $2 x^{2}-5 x-3$ |
| Expand answer form and compare coefficients | We know that our answer form will look like $(x+p)^{2}+q$ Expanding this gives $x^{2}+2 p x+p^{2}+q$ | Our answer form will look like $a(x+p)^{2}+q$ <br> Expanding this gives $a x^{2}+2 a p x+a p^{2}+q$ |
|  | So $x^{2}-8 x-1$ is identical to (三) $x^{2}+2 p x+p^{2}+q$ | So $2 x^{2}-5 x-3$ is identical to (三) $a x^{2}+2 a p x+a p^{2}+q$ |
|  | Let's colour code for ease of explanation: $x^{2}-8 x-1 \equiv x^{2}+2 p x+p^{2}+q$ | Let's colour code for ease of explanation: $2 x^{2}-5 x-3 \equiv a x^{2}+2 a p x+a p^{2}+q$ |
|  | By comparing coefficients of the $x^{2}, x$ and constant terms we get $\begin{gathered} 2 p=-8 \\ p^{2}+q=-1 \end{gathered}$ | By comparing coefficients of the $x^{2}, x$ and constant terms we get $\begin{gathered} a=2 \\ 2 a p=-5 \end{gathered}$ |
|  | Solving simultaneously via substitution gives, $p=-4, q=-17$ | $a p^{2}+q=-3$ <br> Solving simultaneously via substitution gives, $a=2, p=-\frac{5}{4}, q=-\frac{49}{8}$ |
|  | So $(x+p)^{2}+q$ becomes $(x-4)^{2}-17$ | so $a(x+p)^{2}+q$ becomes $2\left(x-\frac{5}{4}\right)^{2}-\frac{49}{8}$ |

Examples where you need to re-arrange first

| $5+2 x-x^{2}$ | $1.8+0.4 d-0.002 d^{2}$ |
| :---: | :---: |
| Re-write as | Re-write as |
| $-x^{2}+2 x+5$ | $-0.002 d^{2}+0.4 d+1.8$ |
| We now factorise out the -1 (i.e. divide everything by 2 ) | We now factorise out the -0.002 (i.e. divide everything -0.002 ) |
| $-1\left(x^{2}-2 x-5\right)$ | $-0.002\left(d^{2}-200 d-900\right)$ |
| Now complete the square on inside the bracket as usual | Now complete the square on inside the bracket as usual |
| $-1\left[(x-1)^{2}-5-1\right]$ | $\left.-0.002\left[(d-100)^{2}-900-100^{2}\right)\right]$ |
| $-1\left[(x-1)^{2}-6\right]$ | $-0.002\left((d-100)^{2}-10900\right)$ |
| Multiply the -1 back in $\begin{gathered} -1(x-1)^{2}+6 \\ 6-(x-1)^{2} \\ \hline \end{gathered}$ | Multiply the -0.002 back in $\begin{gathered} -0.002(d-100)^{2}+21.8 \\ 21.8-0.002(d-100)^{2} \\ \hline \end{gathered}$ |

